How VSM works Summary Examples Discussion Graphs SciCura About

6.   VSMGraphs

(This page is a stub.)

VSMGraphs are a way to represent the content of one or multiple VSM-sentences in a single graph. Loosely spoken, it’s a bit like an integration of ‘semantic memory‘ (like ontology-based classifications) and ‘episodic memory‘ (specific facts, like VSM‘s core functionality).

More text may follow later (based on a still-unpolished text I’ve written a while ago).

But maybe you can already get the gist from this preview? :

Here’s another one :  (and the grey-shaded areas just highlight two VSM-sentences’ individual subgraphs) :

And since we promised earlier that we’d explain this after a picture of a VSMGraph, here is:

📖 The Fourth Founding Principle of VSM:

  1. general concepts are free from any ‘context’, while
  2. specific concepts are placed into an implicit context’, and
  3. some of their implicit context is made explicit via tridents/bidents and list connectors.
  4. A coreference’d child inherits all of this context from its parent; except that some more of its context is made explicit, via its own connected terms.

Let’s elaborate on each:
1.  A General Concept is a ‘general idea/understanding’ of something that we can have in our minds. For example, the concept of Duck, in general, is not any specific duck. So meaning-wise, it’s not ‘placed in’ any ‘context’ (which would make it specific) at all.

2+3.  A Specific Concept, however, is one that we have mentally placed into some ‘context’ (i.e. associated ‘things/meanings’ that make the concept a particular thing). Now, it is important to realize that this ‘context’ consists of two parts. Most obviously, there is explicit context: this comes from all what is connected to the concept in a VSM-sentence, through tridents/bidents and list connectors. But there is also implicit context: all the other things that aren’t said explicitly about it, and many of which we may not even know!
Just think about this example. When I tell you about a particular caffeine molecule that I observed in a biochemical experiment, then I may describe which molecule I meant, e.g.: one that was bound to some receptor in the brain. But I didn’t mention, nor do I often even know, some other context details that are implicitly attached to it, but that still make it particular. For example, what exact location in the brain was the receptor? Were any other molecules possibly interacting with the caffeine? And even more in detail, what isotopes of carbon did the caffeine consist of? And even history-like context like: who produced the caffeine molecule/s (maybe it had impurities that influenced my experiment)? Was it stored correctly? Who prepped it? Etc.
All these things are what make up any specific VSM-term’s implicit context. They are absent details, but they are still what make the VSM-term a ‘specific thing’ in our minds. – So, a specific concept is always embedded in lots of unspecified, ‘implicit context’.
– (This is what we also explained, in a bit ad-hoc manner, in that section on the Examples page). 

4.  When you look at VSMGraphs, you may see that there can be hierarchies of concepts with more and more context: from general concept (white node), down to specific concept (black node), down to a coreferenced, more-specific child-concept (also black) (I like to call this: sub-specification of a concept), and so on. So if you’d build a story around some concepts, then you’d create chains of sub-specified concepts that get consecutively embedded into ever-more explicit context. (Like: attached details, or a growing history we’re learning about it). For example: Arnold woke up one morning. Then he saved the world. (Now the he is a concept of which we also already know that it woke up that morning). Then he jumped into a pool of lava. (Now he is subspecified again, and has again more explicit context attached). Etc.  – So there is always opportunity to make a specific concept ever-more specified.

Take a peek at → the SciCura page →→

Or continue to → the About page →→